8 04, 2024

Galvanized Steel for Solar Tracking: Applications and Capabilities

2024-04-10T15:16:06+00:00April 8th, 2024|News Blog|

The immense potential of solar power as a renewable energy source is globally acknowledged, leveraging the abundant, clean, and accessible energy from the sun. To maximize sunlight capture throughout the day, solar panels need to be optimally oriented, a task achieved by solar trackers. Furthermore, these devices adjust solar panels or collectors to follow the sun’s path. Significantly, this enhances their efficiency and energy output by 25% to 40% over fixed installations.

What makes a well-designed solar tracker? What material can support the weight and movement of solar panels or collectors while resisting corrosion and rust from exposure to the elements? It’s simple. The answer is galvanized steel.

This blog will explore the role and benefits of galvanized steel for solar tracking and how it can help you achieve your green energy goals. Stay tuned and learn more about galvanized steel for solar tracking and how the leading steel service center, National Material Company, can enhance your sustainable energy projects.

Galvanized steel is an incredibly powerful material that should not be underestimated.

To produce galvanized steel, manufacturers apply a layer of zinc to the steel, which prevents rust and corrosion. In fact, the function of the zinc coating is to act as a sacrificial anode. This means the zinc layer will corrode before the steel layer beneath it. Various industries and applications widely use galvanized steel due to its low cost, long life, and resistance to mechanical damage.

Galvanized steel offers several advantages: 

  • Less expensive than stainless steel and does not require additional surface treatments or coatings.
  • It has a lengthy lifespan of more than 50 years in average environments and more than 20 years in severe water exposure.
  • The galvanization process controls the coating thickness and quality, making it reliable and consistent.
  • As a result of the zinc coating creating a metallurgical bond with the steel, its mechanical properties are improved, rendering it solid and long-lasting.

Some galvanized steel applications are:

  • Construction — People use galvanized steel for roofing, walling, foundations, and structural components such as beams, columns, and frames.
  • Automotive — Manufacturers use galvanized steel to make body panels, chassis, and other parts that must withstand corrosion and maintain strength.
  • Solar — Mounting systems, frames, and supports for solar panels are made with galvanized steel, capable of enduring severe weather and UV exposure.
  • HVAC — Ductwork, pipes, and fittings for heating, ventilation, and air conditioning systems often utilize galvanized steel due to its ability to prevent both condensation and corrosion.
  • Agriculture — Galvanized steel is used for fencing, silos, greenhouses, and animal shelters. This is because it can resist animal damage and chemical exposure.

Solar Trackers: Where Steel Shines

Image Attribution: https://www.freepik.com/free-photo/photovoltaics-solar-power-station-energy-from-natural_10896368.htm#page=2&query=galvanized%20steel%20in%20solar%20trackers&position=28&from_view=search&track=ais&uuid=965b391b-330b-401a-9427-5fa200bf38bd

Some […]

8 03, 2024

Processing Steel in the U.S. – Metal Forming 101

2024-03-13T17:10:30+00:00March 8th, 2024|News Blog|

Metal forming is a process vital in the US steel processing industry. Renowned for its capacity to mold complex shapes and structures, it’s a process embraced by steel processors throughout North America for its capability to generate a wide array of essential products, from precision automotive parts to critical aerospace components.

Metal forming requires skilled professionals and advanced machinery, which is where steel service centers come in. These centers are the go-to source for metal processing, forming, and distribution, providing essential services that help transform raw materials into finished products.

What is Metal Forming?

Have you ever wondered how metals manufacturers create various shapes and sizes of metal parts? It’s thanks to the fascinating process of metal forming: the art of shaping a piece of metal into any desired shape. Various methods are involved in this process, from roll forming and bending to extrusion and forging.

The best part about metal forming is its efficiency and accuracy. With this technique, manufacturers can create large, sturdy metal parts with high precision. And that’s why it has become an indispensable part of the manufacturing industry today. Next time you observe a metal part, remember it was made using a specific process.

Metal Forming Process: The Basics

Metal forming is a captivating process that encompasses a diverse array of production techniques. From forging and casting to rolling and bending, there are countless ways to transform raw metal stock into a finished item. Regardless of the technique, manufacturers aim to create high-quality products that meet customers’ needs. So, whether you’re a metalworking expert or just curious about the industry, metal forming is worth learning more about!

Cold Working Process

In the cold working process, one applies force to reshape metal, changing its shape without adding or removing any material. This process can achieve the desired shape of the metal at room temperature.

Heat Treated Process

Metals can be changed in many ways to make them more robust, flexible, and wear-resistant. One way to do this is by heat treatment, a process of altering the physical or chemical properties of a metal through the use of heating or chilling, normally with extreme temperatures, to achieve the desired result or appearance. Heat treatment is a common method used by manufacturers to give metals intricate shapes that are impossible to achieve through simple bending. It can also make steel more flexible and last longer.

Five distinct metal-forming processes:

1. Roll Forming

Roll forming is a key manufacturing process that involves bending a long strip of metal, typically coiled steel, by passing it through consecutive sets of rolls. Each pair of rolls performs a part of the bend until the metal achieves the intended cross-sectional profile. This method is versatile, allowing for the creation of various shapes and sizes at room temperature.

The process allows for manipulation of metals to enhance their physical or mechanical properties, achieving […]

1 11, 2023

Steel Processor Partnership Spotlight: Aluminum Slitting Services

2023-12-06T17:38:56+00:00November 1st, 2023|News Blog|

So, what exactly can one expect from NMC’s aluminum slitting services? Envision a full symphony, where every instrument — from the delicate violin to the mighty timpani — harmoniously combines efforts under the baton of a capable conductor, and the result is a beautiful, well-constructed piece of music.

Aluminum Slitting — like a full symphony — represents a manufacturing process where machinery and tools cut aluminum or steel into various widths. In a nutshell, a slitting line performs this operation, commencing when an uncoiler machine feeds and uncoils coiled aluminum or steel sheets. Subsequently, the material passes through the slitter head, which cuts it into long strips (mults) according to specifications. Rigorous tests and quality checks then verify the precision-cut mults before recoiling, packing, and shipping them to various industries worldwide.

The Aluminum Slitting Line and Its Components

The entire slitting operation, particularly the slitting line, executes a straightforward steel and aluminum slitting process. For example, like a bicycle chain set, each link plays a key role in ensuring precise flow and the production of quality end products. Let’s explore these key elements:

Uncoiler:

Initially loading the large steel or aluminum coil, the uncoiler unwinds the coil as it feeds the metal strip into the slitting section. It operates a tension control system to maintain proper strip tension during the process.

Entry Guide:

A cylindrical device at the entrance of a tube mill maintains the strip on the mill centerline so that the forming process uniformly bends the material.

Slitter Head:

The slitter head, the heart of the slitting machine, consists of a set of rotary knives or blades that precisely cut along the length of the metal strip. Operators adjust these blades to achieve the desired strip width.

Loop Pit or Pit Table:

A controlled area for the metal strip to form a loop, the loop pit or pit table helps maintain consistent tension during the slitting process and prevents damage to the strip.

Tension Control System:

Essential for maintaining proper tension throughout the process, tension control systems adjust the speed at which the metal strip is fed to prevent issues like wrinkling or stretching.

Recoilers:

After the slitting process, the narrower strips wind onto recoiler mandrels. Multiple recoilers may process different widths simultaneously. They feature tension control mechanisms to ensure uniform winding.

Recoiler Mandrels:

Spindles onto which the slit strips wind, recoiler mandrels are designed to accommodate various coil sizes. They include features like expandable segments to secure the strips.

Control Panel:

Modern […]

Go to Top